Interaction of phenothiazines, stilbenes and flavonoids with multidrug resistance-associated transporters, P-glycoprotein and MRP1.
نویسنده
چکیده
Multidrug resistance (MDR) of cancer cells poses a serious obstacle to successful chemotherapy. The overexpression of multispecific ATP-binding cassette transporters appears to be the main mechanism of MDR. A search for MDR-reversing agents able to sensitize resistant cells to chemotherapy is ongoing in the hope of their possible clinical use. Studies of MDR modulators, although they have not produced clinically beneficial effects yet, may greatly enrich our knowledge about MDR transporters, their specificity and mechanism of action, especially substrate and/or inhibitor recognition. In the present review, interactions of three groups of modulators: phenothiazines, flavonoids and stilbenes with both P-glycoprotein and MRP1 are discussed. Each group of compounds is likely to interact with the MDR transporters by a different mechanism. Phenothiazines probably interact with drug binding sites, but they also could indirectly affect the transporter's activity by perturbing lipid bilayers. Flavonoids mainly interact with ABC proteins within their nucleotide-binding domains, though the more hydrophobic flavonoids may bind to regions within transmembrane domains. The possible mechanism of MDR reversal by stilbenes may result from their direct interaction with the transporter (possibly within substrate recognition sites) but some indirect effects such as stilbene-induced changes in gene expression pattern and in apoptotic pathways should also be considered. Literature data as well as some of our recent results are discussed. Special emphasis is put on cases when the interactions of a given compound with both P-glycoprotein and MRP1 have been studied simultaneously.
منابع مشابه
Differential effect of phenothiazines on MRP1 and P-glycoprotein activity.
BACKGROUND Overexpression of ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) or breast cancer resistance protein (BCRP) accounts for majority of cases of multidrug resistance (MDR) of cancer cells. MATERIALS AND METHODS In the present work, the interactions of seven commercially available phenothiazine derivatives, known ...
متن کاملVersatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells
Stem cells are undifferentiated cells capable of proliferation, self-renewal, and production of a large number of differentiated progeny. Stem cells exist even in malignancies. They are called cancer stem cells, which may represent the origin of these tumors and may be one of the reasons of chemoresistance. The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is important for the maintenance of...
متن کاملComparative study of the importance of multidrug resistance-associated protein 1 and P-glycoprotein to drug sensitivity in immortalized mouse embryonic fibroblasts.
Multidrug resistance-associated protein 1 and P-glycoprotein are major ATP-binding cassette transporters that function as efflux pumps and confer resistance to a variety of structurally unrelated anticancer agents. To evaluate the comparative importance of these transporters with respect to anticancer agents, we established and characterized SV40-immortalized [mrp1(-/-)] (KO), [mdr1a/1b(-/-)] (...
متن کاملSubcellular localization and activity of multidrug resistance proteins.
The multidrug resistance (MDR) phenotype is associated with the overexpression of members of the ATP-binding cassette family of proteins. These MDR transporters are expressed at the plasma membrane, where they are thought to reduce the cellular accumulation of toxins over time. Our data demonstrate that members of this family are also expressed in subcellular compartments where they actively se...
متن کاملThe molecular basis of the action of disulfiram as a modulator of the multidrug resistance-linked ATP binding cassette transporters MDR1 (ABCB1) and MRP1 (ABCC1).
The overexpression of multidrug resistance protein 1 (MDR1) and multidrug resistance protein 1 (MRP1) gene products is a major cause of multidrug resistance in cancer cells. A recent study suggested that disulfiram, a drug used to treat alcoholism, might act as a modulator of P-glycoprotein. In this study, we investigated the molecular and chemical basis of disulfiram as a multidrug resistance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 58 4 شماره
صفحات -
تاریخ انتشار 2011